Detailed Soot Source Terms Modeling in Turbulent Reacting Flow

نویسندگان

  • Yongfeng Liu
  • Youtong Zhang
  • Hongsen Tian
  • Lianda Liu
چکیده

To calculate soot source terms a new detailed kinetic soot model is applied to study the formation and oxidation of soot particles in turbulent flames. The model is based on a detailed description of the chemical and physical processes leading to the formation of soot. It can be subdivided into the growth of polycyclic aromatic hydrocarbons (PAHs) in the gas phase reactions and the processes of particle inception, condensation, surface growth, and oxidation. Two different parts are developed about the growth of PAHs in the gas phase reaction. The first step towards the formation of soot is the formation of benzene and the second step is how to form PAH from benzene. In surface growth and oxidation process Hydrogen Abstraction Carbon Addition (HACA) mechanism is modified due to the finding that the bound between the acetylene and the soot surface can be broken at high temperature in the experiment. Finally the analysis about soot source terms are used in turbulent combustion and different calculated results are obtained for different soot source terms. Acetylene, soot and OH densities are discussed and soot spatial distributions in the cylinder for different crank angle degree are carried out in 4JB1 engine.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detailed Modelling of Soot Formation in a Partially Stirred Plug Flow Reactor

The purpose of this work is to propose a detailed model for the formation of soot in turbulent reacting flow and to use this model to study a carbon black furnace. The model is based on a combination of a detailed reaction mechanism to calculate the gas phase chemistry, a detailed kinetic soot model based on the method of moments, and the joint composition probability density function (PDF) of ...

متن کامل

Studies on Soot Formation and Combustion in Turbulent Spray Flames: Modeling and Experimental Measurement

The present study is concerned with measuring and simulating soot formation and combustion in turbulent liquid fuel spray flames. Soot concentrations inside the combustor are measured by filter paper technique. The simulation is based on the solution of the fully-coupled conservation equations for turbulent flow, chemical species kinetic modeling, fuel droplet evaporation and combustion and...

متن کامل

Interaction of Turbulence, Chemistry, and Radiation in Strained Nonpremixed Flames

This paper provides an overview of recent progress in our development of highfidelity simulation of turbulent combustion with detailed chemistry. In particular, two major accomplishments are presented and discussed: (a) As for the computational aspects, it was recognized that many existing techniques to treat inflow and outflow boundary conditions for compressible flow simulations suffered from...

متن کامل

On the Dependence of Soot Formation and Combustion on Swirling Combustion Furnaces: Measurement and Simulation

Soot concentration distribution is investigated both numerically and experimentally in methane-air diffusion flame. The experimental work is conducted with a cylindrical swirl stabilized combustor. Filter paper technique is used to measure soot volume fraction inside the combustor. The numerical simulation is based on the solution of the fully-coupled conservation equations for swirling turbule...

متن کامل

Modeling soot formation in turbulent kerosene/air jet diffusion flames

Soot volume fraction and number density in a turbulent diffusion flame burning kerosene/air were predicted using two approaches. The first used a conventional soot inception model based on the acetylene concentration and is referred to as the acetylene model. The second used a soot inception model based on the formation rate of three and two ring aromatics [1] and is referred to as the PAH ince...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009